$\mathrm{BaWO}_{4}-\mathrm{II}$ (A High-Pressure Form)

By I. Kawada, K. Kato and T. Fujita
National Institute for Researches in Inorganic Materials, Kurakake, Sakura-mura, Niihari-gun, Ibaraki-ken 300-31, Japan

(Received 6 February 1974; accepted 6 April 1974)

Abstract

Monoclinic, $P 2_{1} / n, a=13 \cdot 159(12), b=7 \cdot 161$ (3), $c=7.499$ (6) $\AA, \beta=93.76(5)^{\circ} . Z=8 . D_{m}=7 \cdot 17, D_{x}=$ $7 \cdot 26 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystals were synthesized under high pressure at high temperature. The structure has no direct resemblance either to the scheelite- or to the wolframitetype. It consists of densely packed layers of WO_{6} octahedra, which are connected by edge- and corner-sharing; barium atoms are located between them. The coordination number of the barium atoms has increased in comparison with the structure under ordinary conditions.

Introduction. This phase exists above the pressure $P($ kbar $)=26 \cdot 7+0.0265 T\left({ }^{\circ} \mathrm{C}\right),\left(T=600-1000^{\circ} \mathrm{C}\right)$, and is quenchable to normal pressure (Fujita, Yamaoka \& Fukunaga, 1974).

The intensity data were collected on a Rigaku fourcircle diffractometer with Mo $K \alpha_{1}(\lambda=0.70926 \AA)$ radiation monochromatized by graphite. In the range $2 \theta \leq 90^{\circ}, 6099$ independent reflexions were measured, of which 3791 were considered not observed. The systematic absences were $h 0 l, h+l=2 n+1$, and $0 k 0, k=$ $2 n+1$, giving the space group $P 2_{1} / n$ (No.14).

Fig. 1. Projection of the structure along the a axis. Atoms between $-\frac{1}{4}<x<\frac{1}{4}$ are depicted.

The positions of the barium and tungsten atoms were obtained by the Patterson superposition method. A difference Fourier synthesis revealed the positions of the oxygen atoms. In the subsequent full-matrix least-squares refinement using the program ORFLS (Busing, Martin \& Levy, 1962), the temperature factors of the barium and tungsten atoms were assumed to be anisotropic. A uniform isotropic thermal parameter $B=0.0993$ was assigned to the oxygen atoms. This value corresponds to the mean of their B values at the refinement stage when $R=0 \cdot 08$; individual B values vary from $-0.06(13)$ to $0.43(13)$. The final R value was 0.077 and the weighted $R 0.096$ for 2308 observed reflexions.*

The atomic scattering-factors for Ba and W were taken from International Tables for X-ray Crystallography (1962). That for O was taken from Hanson, Herman, Lea \& Skillman (1964). The absorption correction was not applied $(\mu R=1 \cdot 15)$.

Discussion. Except for a few examples the ABO_{4}-type molybdates and tungstates generally crystallize either in the scheelite-type or in the wolframite-type structure (Sleight, 1972). The normal-pressure phase of BaWO_{4} has the scheelite-type structure, whereas the high-pressure phase, has a new type of structure, containing densely packed two-dimensional networks of WO_{6} octahedra. The increase in density of about 12.7% reflects this.

Table 1. Atomic coordinates

	x	y	z
$\mathrm{Ba}(1)$	$0.15779(14)$	$0.65295(34)$	$0 \cdot 15643(27)$
$\mathrm{Ba}(2)$	$0.14304(15)$	$0.93648(33)$	$0.64178(27)$
$\mathrm{W}(1)$	$0.08053(10)$	$0.15756(20)$	$0.09206(17)$
$\mathrm{W}(2)$	$0.08515(9)$	$0.44516(20)$	$0.65503(17)$
$\mathrm{O}(1)$	$0.1091(16)$	$0.0245(32)$	$0.2972(29)$
$\mathrm{O}(2)$	$0.1745(16)$	$0.5851(32)$	$0.7973(29)$
$\mathrm{O}(3)$	$0.0524(16)$	$0.6357(33)$	$0.4705(28)$
$\mathrm{O}(4)$	$0.2110(16)$	$0.2530(32)$	$0.0571(29)$
$\mathrm{O}(5)$	$0.0499(16)$	$0.2709(32)$	$0.8235(29)$
$\mathrm{O}(6)$	$0.1716(16)$	$0.3095(32)$	$0.5222(29)$
$\mathrm{O}(7)$	$0.0219(16)$	$0.3651(33)$	$0.1887(29)$
$\mathrm{O}(8)$	$0.0740(16)$	$0.9304(33)$	$0.9467(29)$

[^0]Table 2. Thermal parameters expressed as $\exp \left[-\left(h^{2} \beta^{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l b_{23}\right)\right]$
Values are $\times 10^{5}$. The isotropic thermal parameter of the oxygen atoms was fixed at $B=0.0993$ (see text).

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Ba}(1)$	$90(8)$	$386(32)$	$305(25)$	$-11(15)$	$6(12)$	$-1(29)$
$\mathrm{Ba}(2)$	$123(9)$	$397(34)$	$258(24)$	$-45(15)$	$47(12)$	$-10(28)$
$\mathrm{W}(1)$	$52(5)$	$170(18)$	$84(14)$	$-3(9)$	$-14(7)$	$-16(17)$
$\mathrm{W}(2)$	$38(5)$	$172(19)$	$87(14)$	$-2(9)$	$-20(7)$	$47(17)$

Tables 1 and 2 list the positional and thermal parameters. Projections of the structure along the a and b axes are shown in Figs. 1 and 2. For simplicity, only the atoms between $-\frac{1}{4}<x<\frac{1}{4}$ are shown in Fig. l. As can be observed in these projections, the structure of this high-pressure phase is built up of zigzag layers of WO_{6} octahedra parallel to (100); these zigzag layers are linked by barium atoms.

Each layer consists of eight- and four-membered rings of WO_{6} octahedra; in the former type of ring each pair of edge-shared octahedra is linked with another by corner-sharing, while in the latter all octahedra are linked by corner-sharing.

The WO_{6} octahedra are slightly distorted and the tungsten atoms are slightly shifted from their centres. W(1) has four near oxygen atoms at distances from 1.83 to $1.96 \AA$, and two oxygen atoms at greater

Table 3. Interatomic distances (\AA) around W atoms

		W(1)		W(2)
W-O				
	$\mathrm{O}(1)$	1.83 (2)	O(2)	1.83 (2)
	$\mathrm{O}(4)$	1.88 (2)	O(3)	1.97 (2)
	$\mathrm{O}(7)$	1.84 (2)	$\mathrm{O}(5)$	1.86 (2)
	$\mathrm{O}\left(5^{\text {i }}\right.$)	$2 \cdot 18$ (2)	O(6)	1.84 (2)
	$\mathrm{O}\left(8^{\text {il }}\right.$)	1.96 (2)	$\mathrm{O}\left(3^{\text {iid }}\right.$)	2.07 (2)
	$\mathrm{O}\left(8^{\text {ii }}\right.$)	$2 \cdot 13$ (2)	$\mathrm{O}\left(7^{\text {iii }}\right)$	$2 \cdot 33$ (2)
	Average	1.97	Average	1.98
$\mathrm{O}-\mathrm{O}$				
	Min.	$2 \cdot 37$ (4)	Min.	$2 \cdot 44$ (5)
	Max.	$3 \cdot 01$ (3)	Max.	$2 \cdot 98$ (3)
	Average	$2 \cdot 76$	Average	$2 \cdot 77$

Symmetry code
distances of $2 \cdot 13$ and $2 \cdot 18 \AA$. Likewise $W(2)$ also has four near oxygen atoms at distances from 1.83 to 1.97 \AA, and two oxygens at greater distances of 2.07 and $2.33 \AA$. It is to be noted that these distances and bond angles (Tables 3 and 4) around the tungsten atoms are not significantly different from those of WO_{6} octahedra at normal pressure (Gebert \& Kihlborg, 1969; Kihlborg \& Gebert, 1970).

In comparison with the structure at normal pressure, however, the barium atoms have essentially higher coordination numbers. $\mathrm{Ba}(1)$ is surrounded by nine oxygen atoms at distances from 2.72 to $3.05 \AA$, and $\mathrm{Ba}(2)$ by eight oxygen atoms at distances from 2.52 to $3.05 \AA$ (Fig. 3, Table 5). They have next nearest oxygen atoms at 3.20 and $3.37 \AA$ respectively.

$$
\begin{array}{lr}
\mathrm{i} & \begin{array}{r}
x, \\
\mathrm{ii} \\
\text { iii }
\end{array} \\
\mathrm{x},-1+y,-1+z \\
-x, & 1-y, \quad 1+z
\end{array}
$$

Table 4. Bond angles around W atoms ($\angle \mathrm{O}-\mathrm{W}-\mathrm{O}$)
For symmetry code see Table 3.
Around W(1) atom

	$\mathrm{O}(4)$
$\mathrm{O}(1)$	$99 \cdot 6(0 \cdot 9)$
$\mathrm{O}(4)$	
$\mathrm{O}(7)$	
$\mathrm{O}\left(5^{\mathrm{i}}\right)$	
$\mathrm{O}\left(8^{\mathrm{ii}}\right)$	

Around $W(2)$ atom

	O(3)	O(5)	O(6)	$\mathrm{O}\left(3^{\text {III }}\right)$	$\mathrm{O}\left(7^{\text {ili }}\right)$
O(2)	$97 \cdot 6(0 \cdot 9)$	98.7 (1.0)	102.0 (1.0)	158.0 (0.9)	77.0 (0.9)
O(3)		$152.9(0 \cdot 9)$	95.8 (0.9)	$74 \cdot 3$ (1.0)	$80 \cdot 7$ (0.8)
$\mathrm{O}(5)$			$101 \cdot 8(1 \cdot 0)$	$82 \cdot 6$ (0.9)	$82 \cdot 1$ (0.9)
$\mathrm{O}(6)$				99.2 (0.9)	$176 \cdot 0$ (0.9)
$\mathrm{O}\left(3^{\text {iii }}\right)$					$81 \cdot 5(0 \cdot 8)$

Fig. 3. Coordination of barium atoms (broken lines). Oxygen atoms are identified only by numbers. For the symmetryoperation superscripts see Table 5.

The calculations were carried out on the FACOM 270-20 of the National Institute for Researches in Inorganic Materials. Bond lengths and angles were calculated using the program ORFFE (Busing, Martin \& Levy, 1964).

References

Busing, W. R., Matrin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Table 5. Interatomic distances (\AA) between Ba and O atoms and between metal atoms
Ba-O

	$\mathrm{Ba}(1)$		$\mathrm{Ba}(2)$
$\mathrm{O}\left(1^{1}\right)$	$2 \cdot 95$ (2)	$\mathrm{O}\left(1^{1}\right)$	$2 \cdot 67$ (2)
$\mathrm{O}\left(2^{\text {li }}\right.$)	$2 \cdot 76$ (2)	$\mathrm{O}(2)$	2.79 (2)
$\mathrm{O}(3)$	$2 \cdot 81$ (2)	$\mathrm{O}\left(2^{v}\right)$	$2 \cdot 64$ (2)
$\mathrm{O}(4)$	3.05 (2)	$\mathrm{O}(3)$	2.74 (2)
$\mathrm{O}\left(4^{\text {i11 }}\right.$)	$2 \cdot 76$ (2)	$\mathrm{O}\left(4^{\text {iii }}\right.$)	$2 \cdot 83$ (2)
$\mathrm{O}\left(5^{\text {iv }}\right.$)	$2 \cdot 80$ (2)	$\mathrm{O}\left(5^{1}\right)$	3.05 (2)
$\mathrm{O}\left(6^{\text {ili }}\right.$)	2.91 (2)	$\mathrm{O}\left(6^{\text {i }}\right.$)	$2 \cdot 85$ (2)
O(7)	2.75 (2)	$\mathrm{O}(8)$	$2 \cdot 52$ (2)
$\mathrm{O}\left(8^{\text {i1 }}\right.$)	$2 \cdot 72$ (2)		
Average	$2 \cdot 83$	Average	2.76
Next nearest neighbour		Next nearest neighbour	
$\mathrm{O}\left(1^{\text {iii }}\right.$)	$3 \cdot 20$ (2)	$\mathrm{O}\left(7^{\text {iv }}\right.$)	$3 \cdot 37$ (2)

$\mathrm{Ba}-\mathrm{Ba}$	Min.	$3.878(4)$
$\mathrm{W}-\mathrm{W}$	Min.	$3.219(3)$
$\mathrm{Ba}(1)-\mathrm{W}(1)$		$3.713(3)$
$\mathrm{Ba}(2)-\mathrm{W}(2)$		$3.603(3)$

Symmetry code

$$
\begin{array}{lrr}
\text { i } & x, 1+y, & z \\
\text { ii } & x, & y,-1+z \\
\text { iii } & \frac{1}{2}-x, \frac{1}{2}+y, & \frac{3}{2}-z \\
\text { iv } & -x, 1-y, & 1-z \\
\text { v } & \frac{1}{2}-x, \frac{1}{2}+y, & \frac{3}{2}-z
\end{array}
$$

Fuitta, T., Yamaoka, S. \& Fukunaga, O. (1974). Mat. Res. Bull. 9, 141-146.
Gebert, E. \& Kihlborg, L. (1969). Acta Chem. Scand. 23, 221-231.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kihlborg, L. \& Gebert, E. (1970). Acta Cryst. B26, 10201026.

Sleight, A. W. (1972). Acta Cryst. B28, 2899-2902.

3,5-Dinitropyridine

By Riccardo Destro, Tullio Pilati and Massimo Simonetta
Istituto di Chimica Fisica e Centro C.N.R., Università, Via Golgi 19, 20133 Milano, Italy

(Received 22 April 1974; accepted 24 April 1974)

Abstract

Dinitropyridine, $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$, is orthorhombic, space group $P 2_{1} 2_{1} 2_{1} ; a=19 \cdot 918(3), b=$ $6 \cdot 465(1), c=5 \cdot 272(1) \AA, Z=4, D_{m}=1 \cdot 65, D_{c}=1.654 \mathrm{~g}$ cm^{-3}. One of the two nitro groups is approximately coplanar with the ring system; the other is rotated by 7°. This small but significant rotation is very likely due to packing interactions.

Introduction. Crystals of 3,5 -dinitropyridine are pale yellow prisms elongated along the chosen crystallo-

graphic b axis. The cell dimensions were obtained by a least-squares fit to the $\sin ^{2} \theta$ values of 48 hkl reflexions measured on a diffractometer. The density was measured by flotation in dilute Thoulet $\left(\mathrm{K}_{2} \mathrm{HgI}_{4}\right)$ solution. Crystal data are given in Table 1. For the data collection, a crystal with approximate dimensions $0.40 \times$ $0.20 \times 0.15 \mathrm{~mm}$ was sealed in a Lindemann-glass capillary. Intensities were collected on a Syntex automated diffractometer with Mo $K \alpha$ radiation [$\lambda(M o K \alpha)=$ $0.7107 \AA$; graphite monochromator] and a variable

[^0]: * A list of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30442 (13 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars. Chester CH1 1 NZ, England.

